Dr. Thiedig

Digox 601 dac

Degassed Acid Conductivity

Digox 601 dac

Degassed Acid Conductivity

The conductivity in the water-steam circuit in power plants is an important measurement.

It must be distinguished between:

- Specific conductivity
 which records the sum of all charge carriers and is mainly caused by
 enriched alkalising materials.
- Cation conductivity
 which records the sum of hydrogen ions occurring and to a limited extent anions, i.e. also CO₃²⁻. In normal conditions, H⁺ and OH⁻ combine to form water according to the ion product so that the cation conductivity value of 0.2µS cm⁻¹ will not be exceeded. As soon as the cation conductivity demonstrably exceeds this value or is possibly even higher than the specific conductivity, a case of break-down has occurred
 - coolant leakage or an
 - air-inleakage.

which is either due to a

In order to ensure a short start-up phase, it has be differentiated whether an air-inleakage or a coolant leakage exists. Therefore, it is necessary to remove the carbonic acid from the sample. The conductivity after the ${\rm CO_2}$ -degassing is now measured (degassed conductivity).

If the conductibility value measured after degassing falls under the value of $0.2\mu S$ cm⁻¹ then merely H+ and OH- according to the ion product of the water are still present as well as slip-induced anions as charge carriers. Thus, a cooling water hardness change can be ruled out and the start-up phase can be significantly shortened.

With the **Digox 601** *dac* you have a universal measuring instrument at your disposal. In the compact design, the specific conductivity and the cation conductivity are measured and the pH-value is calculated – the "degassed conductivity" is displayed.

flow chart

Control

Valve

Control Valve

Air-Pump

Air

DAC Outlet

Inlet

Air Flow

Air-Bypass

Sample Inlet Sample Outlet

Conductivity

Sensor 1

FI)

Flow to DAC

Control

Valves

Degassing and measurement at normal temperature

Conductivity

Sensor 2

No heating up, therefore no gas emissions of other volatile acids

Venturi

- No inert gas required, air-conditioning by means of a molecular sieve
- High gain of degassed carbonic acid
- Interpolation of measuring results to actual CO₂ content
- Automatic shut down of the DAC reactor following the fall below the acceptable limit of 0.2 µS cm⁻¹ (VGB-guideline)
- Short response times
- Regenerative operating chemicals

Device	Digox 601 <i>dac</i>
Measuring range	Conductivity 0 – 200 mS/cm, divided into measuring ranges, pH 7.5 – 10.5
Display	Graphic display, backlit
Accuracy	$\pm~1~\%$ of the measuring field final value
Alarm outputs	six relays; 6 A/250 VAC max. 550 VA
Error report	accumulative error report, potential-free change-over contacts 6 A/250 VAC,
	water shortage, high temperature
Operation	password protection for the menu-led entry with 6 operating keys
Analog outputs	five 0(4)20 mA, bi-linear, max. load 500 Ω galvanically isolated
Ambient temperature	+5 – 45°C, storage and transport 0 – 50°C, relative humidity 30 – 95 %
Sample quantity	Display in I/h with digital flow rate sensor
Power supply	230 VAC 50/60Hz, 50 VA
Weight	40.0 kg
Dimensions	700 x 500 x 250 mm (HxWxD)

Subject to technical alterations.

Necessary preconditions for the validity of the pH-value calculation:

- Use of just one alkalising medium
- Main contamination of NaCl
- pH-value >8
- Low phosphate concentration (< 0.5 mg/l)

Dr. Thiedig

Engineering Solutions

Dr. Thiedig + Co KG Prinzenallee 78-79 13357 Berlin Germany